Why is cyclohexene able to react with bromine water, but Benzene isn't

Cyclohexene's structure is 6 carbons bonded in a ring, with a single double bond existing between carbons 1 and 6Benzene is also a 6 carbon ring, however it has a delocalised electron ring around the structure instead of any localised double bonds.The 1,6 double bond in Cyclohexene has a very high electron density, and hence has a strong ability to polarise molecules such as Br2, whereas the delocalised ring in Benzene has a lower electron density (still more dense than cyclohexane's single bonds) which means it has much less polarising power than the double bond in cyclohexene.This means that Cyclohexene is able to induce a tempoary dipole in Br-Br molecules and this allows one Br to attract an electron pair from the double bond, leading to bromination of the cyclohexene into 1,2-bromocyclohexane.Benzene is unable to induce dipoles in Br-Br molecules so does not react in their presence without catalysts.

Related Chemistry A Level answers

All answers ▸

What is le Chatelier's principle?


Describe chemical test/s you could use to determine the identity of a carbonyl compound.


Explain the resistance to bromination of benzene in comparison to phenol.


A 1000 cm3 container of ammonia (NH3) has a mass of 20.7g, it is stored at room temperature (298 K). When empty the container has a mass of 20.0 g, calculate the pressure inside the container in kPa to an appropriate number of significant figures.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences