Why is cyclohexene able to react with bromine water, but Benzene isn't

Cyclohexene's structure is 6 carbons bonded in a ring, with a single double bond existing between carbons 1 and 6Benzene is also a 6 carbon ring, however it has a delocalised electron ring around the structure instead of any localised double bonds.The 1,6 double bond in Cyclohexene has a very high electron density, and hence has a strong ability to polarise molecules such as Br2, whereas the delocalised ring in Benzene has a lower electron density (still more dense than cyclohexane's single bonds) which means it has much less polarising power than the double bond in cyclohexene.This means that Cyclohexene is able to induce a tempoary dipole in Br-Br molecules and this allows one Br to attract an electron pair from the double bond, leading to bromination of the cyclohexene into 1,2-bromocyclohexane.Benzene is unable to induce dipoles in Br-Br molecules so does not react in their presence without catalysts.

Related Chemistry A Level answers

All answers ▸

Use the concept of electronegativity to justify why the acid strengths of ethanedioic acid and ethanoic acid are different.


Differences between Sn1 and Sn2 reactions


Why is methylamine a stronger base than aminobenzene?


The standard enthalpy of formation of glucose is -1273.3kJ/mol, and for carbon dioxide it is -393.5kJ/mol, and for water -285.8 kJ/mol. What is the standard enthalpy of combustion of glucose, C6H12O6?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences