Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n

To show this we should consider when n is odd and when n is even,If n is odd then we can find an m such that n=2m+1. Substituting n=2m+1 and expanding gives 8m^3+12m^2+6m+1+12m^2+12m+3+4m+2+1=8m^3+24m^2+22m+7.We see that 2 divides all the coeffients except the last one. So we can rearrange it as 2(4m^3+12m^2+11m)+7. This is an even number added to an odd one, so it is odd.if n is even we can find an m such that n=2msubstituting n=2m and expanding gives 8m^3+12m^2+4m+1We see that 2 divides all the coeffients except the last one. So we can rearrange it as 2(4m^3+12m^2+4m)+1This is an even number added to an odd one, so it is odd.In conclusion, since n has to be either odd or even, and since both odd and even make n^3+3n^2+2n+1 odd, we get that n^3+3n^2+2n+1 is odd for any integer n.

Answered by Alistair P. Maths tutor

4265 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = x*(x-2)^-1/2. Prove dy\dx = (x-4)/2*(x-2)^3/2


Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.


Solve 29cosh x – 3cosh 2x = 38 for x, giving answers in terms of natural logarithms


What are the advantages of using numerical integration (Trapezium rule, Simpson's rule and so on) over direct integration?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences