Prove algebraically that n^3 +3n -1 is odd for all positive integers n

There are 2 possible cases.

First when n is even, then let n = 2k where k is a positive integer.
Substituting n = 2k gives us:
(2k)3 + 3(2k) -1
= 8k3 + 6k - 1
[We are trying to prove that it is odd so try and write it in the form 2m + 1 or 2m - 1]
= 2(4k3 + 3k) - 1
Since 2(4k3 + 3k) is a multiple of 2 it is even so by taking away 1 makes it odd, therefore when n=2k the expression is odd.

The second case is when n is odd, then let n=2k + 1 where k is a positive integer (including 0).
Substituting n=2k + 1 gives us:
(2k+1)3 + 3(2k+1) -1
[use the binomial theorem to expand (2k+1)3]
(2k)3 + 3(2k)2(1) + 3(2k)(1)2 + (1)3 + 6k + 3 - 1
=8k3 + 12k2 + 6k + 1 + 6k + 2
=8k3 + 12k2 + 12k + 3
=2(4k3 + 6k2 + 6k) + 3
This is an even number + 3 which gives us and odd number, therefore when n=2k+1 the expression is odd.
Therefore we can conclude that for all n, n3 + 3n - 1 is odd.

Answered by Maths tutor

21769 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^2 from first principles


How do I solve quadratic equation by completing the square : X^2 - 4X = 5


A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences