A photon of wavelength 656.3nm is emitted in the Balmer series of a Hydrogen emission lamp. (a). Show that the frequency of the photon is 4.57*10^14 Hz. (b).Use the Planck-Einstein relationship to calculate the energy of the photon.

(a). Firstly, pull out useful information . λ=656.3nm Secondly, identify relevant equation and rearrange to find frequency. λ=c/f => f=c/λ Calculate frequency using the given values (c=310^8 m/s), ensuring to convert nm into m f=c/λ=(310^8)/(656.310^-9) f=4.5710^14 Hz => as required, ensuring correct units (Hz)(b). Firstly, identify relevant equation (Planck-Einstein Relationship) and required variables. f=4.5710^14 Hz h=6.6310^-34 Js => Planck's Constant E=hf Then, calculate energy using the above equation E=hf=(6.6310^-34)(4.5710^14) E= 3.0310^-19J => Final answer, with correct units Joules



Related Physics Scottish Highers answers

All answers ▸

A launcher 1m tall fires tennis balls with a velocity of 15m/s at an angle of 20 degrees from horizontal. Neglecting air resistance, calculate the maximum height, time of flight and distance traveled by the ball.


A 25 micro farad is charged until the potential difference across it is 500V. Calculate the charge stored at this moment.


What is a boson, as described by the standard model?


Calculate the gravitational force acting on the Moon, caused by the Earth, given that the masses of the Earth and the Moon are 6 x10^24 and 7.3 x10^22, respectively. The distance between the Earth and the Moon is 384 400 km.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences