What is the maximum frequency photon of one of the photons produced when a electron and positron annihilate each other?

First we must remember that a positron is the antiparticle of the electron, meaning that they will both have the same amount of rest energy (0.510999 MeV) however since annihilation produces 2 gamma photons each photon will have the same rest energy as one of the particles (0.510999 MeV). We then use the equation E=hc/λ rearranged to λ=hc/E and then sub in:(6.63x10-34)(3x108)/(0.511x106)(1.60x10-19) Notice here that in the denominator i have converted (0.510999 MeV) into MeV and then multiplied by the charge of an electron to get the energy in Joules (J) .
This then gives us the maximum wavelength of a single photon during a photon-positron annihilation: 2.43x10-12m

Related Physics A Level answers

All answers ▸

Two electrons are a distance r apart, the first electron exerts a force F on the second electron. a) What force does the second electron exert on the first? b) In terms of r, at what distance is the force that the first electron exerts on the second F/9?


Is light the fastest? if no, then explain quantum entanglement!


a ball is dropped from rest off a cliff of height 50m, determine the final velocity of the ball assuming no air resistance.


Explain the wave - particle duality


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences