Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1

Referring back to the definition of an integral, it is the sum of small elements on the x-axis (dx) multiplied by the value of the function at that point (y) commonly expressed as the sum of ydx. Since x is negative in this region, so is dx, resulting in all of the elements of the sum being negative. A useful way of remembering this is to think about the problem graphically, and what quadrant our function crosses:x,y > 0 Both ydx (and in turn the integral in this quadrant) is positivex > 0 > y Both ydx (and in turn the integral in this quadrant) is negativex < 0 < y Both ydx (and in turn the integral in this quadrant) is negativex,y < 0 Both ydx (and in turn the integral in this quadrant) is positive
(which is case 3 for the function y=x2 for negative limits)

Answered by Maths tutor

3197 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate dy/dx for y=x(x−1)


Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


Find the roots of y=x^{2}+2x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning