A Block of mass 2kg is on an a smooth inclined plane where sin@ = 3/5 at point A. Point B is 5 meters down the incline. Find the time it will take for the block to reach point given it is at rest at point A.

So to start with draw a free body diagram of a block on the slope at point A with the forces acting on it which will be the downward force of mass x g (2g) due to gravity and the reaction force 2gcos@. There are no frictional forces because the slope is smooth.

We have a couple of knowns already for the suvat equations, s = 5, u = 0, and we want to find t. so we can work out acceleration first using F=ma F=the force going down the slope 2gsin@. Therefore 2gsin@=2a, and by canceling the 2 on each side we get a=gsin@. we now have enough known to make a suvat equation for t. s=ut +0.5at^2 by substituting the numbers in we get 5=(0)t +3/10 t^2. so t is 4.08seconds

HS
Answered by Harry S. Maths tutor

3245 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


y =(4x)/(x^2+5) (a) Find dy/dx, writing your answer as a single fraction in its simplest form. (b) Hence find the set of values of x for which dy/dx<0


Find the coefficient of x^4 in the expansion of: x(2x^2 - 3x + 1)(3x^2 + x - 4)


f(x) = (4x + 1)/(x - 2). Find f'(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning