Given y=(1+x^3)^0.5, find dy/dx.

In order to solve this question, we need to use the chain rule when differentiating. The chain rule formula is dy/dx= (dy/du)(du/dx). Let u=1+x3Differentiating with respect to x gives du/dx=3x2We now have y=u0.5Differentiating with respect to u gives dy/du=0.5u-0.5=0.5(1+x3)-0.5Therefore dy/dx= (dy/du)(du/dx)= 0.5(1+x3)-0.5*(3x2)= 1.5x2*(1+x3)-0.5

Answered by Rebecca M. Maths tutor

4881 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Expand the expression (1+3x)^1/3 up to the term x^3.


How can I get better at Mathematics? I am struggling with confidence and achieving low grades.


How can the trapezium rule be used to estimate a definite integral?


Solve the following equation, give the answer/answers as coordinates. y=3x^2 , y=2x+5.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences