Prove that the product of 3 consecutive integers is divisible by 6

If you set the three consecutive integers to be n, n+1 and n+2, we know that one of the numbers must be divisible by 2 and one must be divisible by 3. For example if you had your three numbers as: 5, 6, 7, one is divisible by 3 and one is divisible by 2, as this is the case with all consecutive three numbers. Therefore as we are multiplying the numbers together, multiplying a multiple of 3 and a multiple of 2 gives us a multiple of 6. Hence the product will be divisible by 6.

Answered by Shreeya K. Maths tutor

12464 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A curve is given by the equation y=x^3-11x^2+28x; find the coordinates of the points where the curve touches the x-axis.


GCSE Maths: Expand and simpify 14(3x-7y)-2x(21-y)


How do I work out probability when a random choice is repeated?


Expand the following brackets: (2x + 1)(x + 3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences