simplify fully: (3x^2 - 8x -3)/(2x^2 -6x)

First of all, to simplify this fraction, we need to factorise the top and bottom equations. We shall start with the top equation. Now looking at the equation: 3x2 - 8x -3, we know that it's a quadratic with 3 different terms, so when we factorise this, it will look something like: ( _x +/- _ )( _x +/- _ ). We know that the two 'x' terms in the brackets need to multiply to make 3x2, so the coefficients of each of the x terms in brackets will be 3 and 1 because 3x1=3. So we now know that the brackets will look more like: (3x +/- _ )(x +/- _ ). We know that the two terms without an 'x' must multiply to make -3, so these coefficients must either be: ( -3 and 1 ) or ( 3 and -1 ). Now we need to deduce how to obtain the -8x from the coefficients that we have, and this will depend on which set of coefficients for the none-x term that we pick, and where we place them in the brackets. From a bit of trial and error we will find that the brackets should look like this: (3x+1)( x-3 ) because when we expand this the 'x' term will be made from (3x) x (-3) +(x)(1) which gives -9x +1x which is -8x.
Now when we factorise the 2x2 - 6x we simply get: 2x( x-3 ). So the fractions will look like: (3x+1)( x-3 )/2x( x-3 ). We can cancel out the ( x-3 ) terms on the top and the bottom of the fraction which will leave us with: (3x+1)/2x, which is the simplest version of this fraction.

Answered by Amanda H. Maths tutor

3299 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In the generic formula 'y=mx + c,' how do you use the 'm' and 'c' to plot a linear graph?


Find an expression for the nth term of the following sequence: 7, 11, 15, 19


How do you solve the following simultaneous equations? Equation 1: 2x + 3y = 13 Equation 2: 3x - y = 3


James has a short drive to his garage which he wishes to pave with a single layer of bricks. If his square drive has side length 2m and James buys the bricks in stacks of 10 with each brick being 0.2m long and half as wide how many stacks must James buy?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences