Solve the following simultaneous equations to give a value for both x and y: 3x+3y=9 and 2x+3y=5

  1. Subtract the bottom equation from the top equation to get 3x-2x=9-5 (you don't see no y values in this equation as the y's have disappeared and cancelled eachother out as 3y-3y=0)2) So 3x-2x=9-5 equals 1x=4 (which is the same as x=4)3) Now we know x=4, substitute this back into one of the equations to find y, shown below: 3x+3y=9 with x substituted in becomes 3(4)+3y=9 which is equal to 12+3y=94) 12+3y=9, bring the +12 across the equals sign to become -12, giving you 3y=9-12 so 3y=-35) If 3y=-3, divide both sides by 3 to give y=-1 6) So the solution is: x = 4, y = -1 which are your two answers to the simultaneous equation :)
AF
Answered by Amy F. Maths tutor

3125 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically the simultaneous equations x^2 + y^2 = 25, y – 3x = 13


A group of 5 people order 2 8 inch pizzas, with heights 2cm and 1cm, and density 3/pi g/cm^3, and 5/pi g/cm^3 respectively. If they divide each pizza evenly, how much pizza, in grams, does each person eat? Use 1 inch = 2.5 cm.


Find the length of a side of the triangle (Pythagoras' Theorem) Two sides are of length 3cm and 4cm, find the length of the Hypotenuse.


Jake has a piece of string that is 126cm long. He cuts the string into 3 lengths with the ratio 4:3:2 . How long is each piece of string?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences