Solve the following simultaneous equations to give a value for both x and y: 3x+3y=9 and 2x+3y=5

  1. Subtract the bottom equation from the top equation to get 3x-2x=9-5 (you don't see no y values in this equation as the y's have disappeared and cancelled eachother out as 3y-3y=0)2) So 3x-2x=9-5 equals 1x=4 (which is the same as x=4)3) Now we know x=4, substitute this back into one of the equations to find y, shown below: 3x+3y=9 with x substituted in becomes 3(4)+3y=9 which is equal to 12+3y=94) 12+3y=9, bring the +12 across the equals sign to become -12, giving you 3y=9-12 so 3y=-35) If 3y=-3, divide both sides by 3 to give y=-1 6) So the solution is: x = 4, y = -1 which are your two answers to the simultaneous equation :)
Answered by Amy F. Maths tutor

2941 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise 2x^2 - 7x -4


Expand and simplify: 3(4x+1)-5(3x-2)


A class has 30 students. The mean height of the 14 boys is 1.52m. The mean height of all the students is 1.48m. Work out the mean height of the girls.


Simplify fully: (24 - √ 300)/(4√ 3 - 5). Give your answer in the form a√ b where a and b are integers and find the values of a and b.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences