The first three terms of an arithmetic series are p, 5p – 8, and 3p + 8 respectively. (a) Show that p=4 (b) Find the value of the 50th term in the series.

(a) If the sequence = p , 5p-8 and 3p+8 is an arithmetic sequence then the difference between successive terms must be constant.e.g. (5p-8)-(p) = (3p+8)-(5p-8)=> 4p-8 = -2p+16 => 6p = 24 => p=24/6 = 4(b) general rule for sequences = a + (n-1)dwhere a = first term ( so in this case a = p = 4 ) and d = common difference ( so in this case d = 5p - 8 -p = 8 )term 50 = 4 + 49(8) = 396

Answered by Daniel S. Maths tutor

9523 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = f(x) where f(x) = (4x + 1) / (x - 2) and x>2. Given that P is a point on C such that f'(x) = -1.


Surds question 3 - C1 2016 Edexcel


Integrate e^(2x)


Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences