The first three terms of an arithmetic series are p, 5p – 8, and 3p + 8 respectively. (a) Show that p=4 (b) Find the value of the 50th term in the series.

(a) If the sequence = p , 5p-8 and 3p+8 is an arithmetic sequence then the difference between successive terms must be constant.e.g. (5p-8)-(p) = (3p+8)-(5p-8)=> 4p-8 = -2p+16 => 6p = 24 => p=24/6 = 4(b) general rule for sequences = a + (n-1)dwhere a = first term ( so in this case a = p = 4 ) and d = common difference ( so in this case d = 5p - 8 -p = 8 )term 50 = 4 + 49(8) = 396

Answered by Daniel S. Maths tutor

9842 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't understand integration by parts - can you explain it please?


1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


Find the binomial expansion of ((x^2) − 5)^3


how do you differentiate y=x^2 from first principles?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences