The first three terms of an arithmetic series are p, 5p – 8, and 3p + 8 respectively. (a) Show that p=4 (b) Find the value of the 50th term in the series.

(a) If the sequence = p , 5p-8 and 3p+8 is an arithmetic sequence then the difference between successive terms must be constant.e.g. (5p-8)-(p) = (3p+8)-(5p-8)=> 4p-8 = -2p+16 => 6p = 24 => p=24/6 = 4(b) general rule for sequences = a + (n-1)dwhere a = first term ( so in this case a = p = 4 ) and d = common difference ( so in this case d = 5p - 8 -p = 8 )term 50 = 4 + 49(8) = 396

DS
Answered by Daniel S. Maths tutor

11595 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).


Using Trigonometric Identities prove that [(tan^2x)(cosecx)]/sinx=sec^2x


Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


Given that log3 (c ) = m and log27 (d )= n , express c /(d^1/2) in the form 3^y, where y is an expression in terms of m and n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning