How would you differentiate ln(x^2+3x+5)?

Here we need to use the chain rule because we have a function (natural log) of another function (x^2+3x+5). Let u=x^2+3x+5, and differentiate lnu with respect to u, this gives us 1/u. Then we differentiate x^2+3x+5 with respect to x, so we get 2x+3. Now the chain rule says: dy/dx=dy/dudu/dx, so we have dy/dx = (1/u)(2x+3)=(2x+3)/(x^2+3x+5)

OH
Answered by Oli H. Maths tutor

23716 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0


Given f(x) = 7(e^2x) * (sin(3x)), find f'(x)


Differentiate the following with respect to x: e^(10x) + ln(6x+2)


Can you please explain how to expand two brackets, eg. (3x-7)(5x+6)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning