How would you differentiate ln(x^2+3x+5)?

Here we need to use the chain rule because we have a function (natural log) of another function (x^2+3x+5). Let u=x^2+3x+5, and differentiate lnu with respect to u, this gives us 1/u. Then we differentiate x^2+3x+5 with respect to x, so we get 2x+3. Now the chain rule says: dy/dx=dy/dudu/dx, so we have dy/dx = (1/u)(2x+3)=(2x+3)/(x^2+3x+5)

OH
Answered by Oli H. Maths tutor

24137 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate cos(x)sin^2(x)


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


By using the substitution x = tan(u), find the integral of [1 / (x^2+1) dx] between the limits 1 and 0


Show how '2sin(x)+sec(x+ π/6)=0' can be expressed as √3sin(x)cos(x)+cos^2(x)=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning