Solve the following simultaneous equations: 2x - 3y = 16, x + 2y = -6

First we label the two equations as (1) and (2):2x - 3y = 16 (1)x + 2y = -6 (2)We want both equations to have the same number before one of the variables so the easiest way is to multiply equation (2) by two to give an equation we'll label (3):2x + 4y = -6 (3)Now we can do (1) - (3) to cancel out the value of x: (1)-(3) : -7y = 28, which can be solved to give y = -4. Now to get the value of x we substitute this y into one of the original equations, for example (2), giving: x - 8 = -6 which can be solved to give x = 2.So our final answer is x = 2, y = -4.

TD
Answered by Tutor401319 D. Maths tutor

4705 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise x^2+6x+8


Divide 270 in the ratio 3:2:1


Work out an estimate for the value of (8.1 x 198)/0.0491


There are n sweets in a bag. 6 are orange. A random sweet gets eaten, and then a second one. The probability that both sweets are orange is 1/3. Find n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning