Solve the following simultaneous equations: 2x - 3y = 16, x + 2y = -6

First we label the two equations as (1) and (2):2x - 3y = 16 (1)x + 2y = -6 (2)We want both equations to have the same number before one of the variables so the easiest way is to multiply equation (2) by two to give an equation we'll label (3):2x + 4y = -6 (3)Now we can do (1) - (3) to cancel out the value of x: (1)-(3) : -7y = 28, which can be solved to give y = -4. Now to get the value of x we substitute this y into one of the original equations, for example (2), giving: x - 8 = -6 which can be solved to give x = 2.So our final answer is x = 2, y = -4.

Answered by Tutor401319 D. Maths tutor

4115 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Dipen and Nisha are planning a wedding reception. Nisha says, “I want to invite 70 guests.” Dipen says, “If we invite one-fifth fewer guests, we will save more than £500” Is Dipen correct?


Solve the following to find x. x^2 +3x -10 =0


Solve the equation (2x-1)/3 + (x+2)/2 +x/6 = 8


The normal price of a television is £1200. It is reduced to £970. Work out the percentage reduction. Give your answer to 1 decimal place.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences