Solve the following simultaneous equations: 3x + y = 11, 2x + y = 8

first: look at the 2 equations and see if there are any matching coefficients. eg the same number before x or y in both of the equations. in these examples both y values have the coefficient 1. second: either add or subtract the 2 equations to remove the y values. in this case need to do equation 1 - equation 2 in order for y to equal 0. so (3x + y = 11) - (2x +y = 8) = x = 3 - this is the x value of the equations third: find the y value by substituting the known x value (3) into one of the simultaneous equations = 2(3) + y = 8 6 +y = 8 y = 2 - this is the y value fourth: you can check you have the right values by substituting them into one of the equations and seeing if it works. eg 3(3) + 2 = 11 9+2 = 11 11 = 11

Answered by Rebecca S. Maths tutor

2620 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Mixed rugby team of 20, 5 are female. 15 play at a time. i.) What is the percentage chance of a female playing. ii.)A minimum of three females must now be on the pitch. What is the percentage chance of 4 females playing?


Solve the simultaneous equations: 2x-3y = 16 x+2y= -6


Which has greater area? A parallelogram with base length 10cm and perpendicular height 6cm, or a circle of diameter 8cm.


Solve the simultaneous equations: y=x^2+4x-2, y=x+2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences