n is an integer such that 6-3n>18 and (-5n)/(n^2-6)>1. Find all the possible values of n.

First we solve 6-3n>18. We do this by rearranging:Carry over the -3n term for 6>18+3n.Take away 18 from both sides for -12>3n.Divide both sides by 3 for -4>n.So we know that n<-4. Now we solve (-5n)/(n^2-6)>1. We do this by rearranging the equation into the form an^2+bn+c(<0):Multiply each side by (n^2-6) for -5n>n^2-6.Move the -5n term to the other side of the equation for n^2+5n-6<0.Factorise the quadratic for (n+6)(n-1)<0.We then look at the graph of the quadratic to solve the inequality for -6<n<1.So the possible values of n must satisfy the inequalities n<-4 and -6<n<1. Hence, we can conclude that -6<n<-4, so the only possible value of n is n=-5.

DC
Answered by Daniel C. Maths tutor

5036 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Josie is paid £1200 per month. She is going to receive an increase of 4% in the amount she is paid. Work out how much money Josie we be paid each month after the increase.


How do I draw a pie diagram?


Ian earns £420 a week after a 5% rise. What was his pay before?


How do I draw a graph, y = mx + c, if I am only given m and a point that the line passes through?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences