∫ x^3 *ln(2x) (from 2->1) can be written in the form pln 2 + q, where p and q are rational numbers. Find p and q.

Firstly I would think about how I could integrate this. In this case you would need integrate by parts. I use LATE to decide which value is u and v' which stands for Log,Algebra,Trig,Exp. Which ever one appears first in the order is made to be u and the other v'. In this case v=ln(2x) and u'=x3 . Next I would find v' and u. Giving v'=1/x and u=x4/4. Putting this into the formula gives:
x4/4*ln(2x)-∫1/x * x4/4 dx = (x4ln(2x))/4-∫x3/4 dxNext I would use the range the question asks for (being 2->1) which results in:[(x4ln(2x))/4]21-1/4[1/4 * x4]21Calculating this gives (16ln(4)/4)-(ln(2)/4) -1/16[(16-1)]=8ln(2)-1/4ln(2)-15/16=31/4 * ln(2)-15/16This is in the form the question asks for giving the answer p=31/4 and q=-15/16

Related Maths A Level answers

All answers ▸

Integrate with respect to x [x^2]


Find the inverse of f(x) = (3x - 6)/2


Differentiate the following: y = 3x^(1/3) + 2


Statistics: Dave throws a ball at a bucket. The probability the ball goes into the bucket is 0.4. Dave throws the ball four times. What is the probability that he gets it in twice?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences