Prove by mathematical induction that 11^n-6 is divisible by 5 for all natural numbers n

First I would do the base case (the first value):Test n=1,111-6=5. 5 is divisible by 5 therefore true for n=1.
Now we assume true for n=k,11k-6 is divisible by 5.Next we test n=k+1,11k+1-6We can rearrange this into 1111k-6= 1011k+11k-6We know that for n=k the result is 11k-6 which we assume to be true so that part can be assumed to be true.The first part can be factorised into 5(2*11k) which is divisible by 5. Therefore we have shown that if true for n=k, true for n=k+1 and as we shown true for n=1 it must also be true for all natural numbers. So we have proved this through induction

Related Further Mathematics A Level answers

All answers ▸

You have three keys in your pocket which you extract in a random way to unlock a lock. Assume that exactly one key opens the door when you pick it out of your pocket. Find the expectation value of the number of times you need to pick out a key to unlock.


Further Maths: How do you find the inverse of a 2 x 2 matrix?


Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.


Sketch the curve y= ((3x+2)(x-3))/((x-2)(x+1)) and find values of y for which y>=3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences