Differentiate x^2 from first principles

Differentiation is about finding gradients of functions. With straight lines we take the "rise of run" - the change in y over the change in x. With curves e.g. f(x) = x^2 we need to use the same idea, only we need to construct an infinitesimally small triangle to be able to do this.
Take an arbitrary x value x1 and another point (x1 + h) where h is a small positive number. we can construct a triangle between these two points and work out the gradient (delta y/delta x). this is (f(x1 + h) - f(x1))/((x1+h) - x1). given f(x) = x^2, this evaluates to (delta y)/(delta x) = 2x1 + h. To make the triangle infinitesimally small, we need to keep decreasing the size of h. We can take a limit to do this. As a shorthand for lim h -> 0 (delta y)/(delta x), we write dy/dx. Thus dy/dx = lim h -> 0 (2x1 + h) = 2x1. i.e. the gradient of the x^2 @ x1 is 2x1.

Answered by Maths tutor

5130 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = (4x^2)ln(x) then find the second derivative of the function with respect to x when x = e^2 (taken from a C3 past paper)


if a^x= b^y = (ab)^(xy) prove that x+y =1


Find the stationary point of the curve y = -2x^2 + 4x.


I don't fully understand the purpose of integration. Could you please explain it to me?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning