Differentiate x^2 from first principles

Differentiation is about finding gradients of functions. With straight lines we take the "rise of run" - the change in y over the change in x. With curves e.g. f(x) = x^2 we need to use the same idea, only we need to construct an infinitesimally small triangle to be able to do this.
Take an arbitrary x value x1 and another point (x1 + h) where h is a small positive number. we can construct a triangle between these two points and work out the gradient (delta y/delta x). this is (f(x1 + h) - f(x1))/((x1+h) - x1). given f(x) = x^2, this evaluates to (delta y)/(delta x) = 2x1 + h. To make the triangle infinitesimally small, we need to keep decreasing the size of h. We can take a limit to do this. As a shorthand for lim h -> 0 (delta y)/(delta x), we write dy/dx. Thus dy/dx = lim h -> 0 (2x1 + h) = 2x1. i.e. the gradient of the x^2 @ x1 is 2x1.

Answered by Maths tutor

5216 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = x^3 + 4x + 1, find the value of dy/dx when x=3


Curves C1 and C2 have equations y= ln(4x-7)+18 and y= a(x^2 +b)^1/2 respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C1 at P is equal to the gradient of C2 at P.


Given that 2-3i is a root to the equation z^3+pz^2+qz-13p=0, show that p=-2 and q=5.


Given that y = 5x^4 + 3x^3 + 2x + 5, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning