Differentiate x^2 from first principles

Differentiation is about finding gradients of functions. With straight lines we take the "rise of run" - the change in y over the change in x. With curves e.g. f(x) = x^2 we need to use the same idea, only we need to construct an infinitesimally small triangle to be able to do this.
Take an arbitrary x value x1 and another point (x1 + h) where h is a small positive number. we can construct a triangle between these two points and work out the gradient (delta y/delta x). this is (f(x1 + h) - f(x1))/((x1+h) - x1). given f(x) = x^2, this evaluates to (delta y)/(delta x) = 2x1 + h. To make the triangle infinitesimally small, we need to keep decreasing the size of h. We can take a limit to do this. As a shorthand for lim h -> 0 (delta y)/(delta x), we write dy/dx. Thus dy/dx = lim h -> 0 (2x1 + h) = 2x1. i.e. the gradient of the x^2 @ x1 is 2x1.

Related Maths A Level answers

All answers ▸

The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


Given that Y=(x+3)(x+5); find dy/dx


Solve integral [3x^2 (x^3 + 1)^6] dx


Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences