Find the magnitude of the force on an electron that is travelling with velocity 2 x 10^4 ms^(-1) in the x direction through a uniform magnetic field of strength 2T in the y direction.

This question tells us we only need to consider the magnitude of the force, and since the magnetic field and electron's velocity are perpendicular, we can simply use the equation

F = Bqv.

We have B = 2 Tq = 1.6 x 10-19 (the charge of an electron) and v = 2 x 10ms-1.

Substituting these values into the equation gives 

F = 2 * (1.6  x 10-19 ) * (2 x 104) = 6.4 x 10-15 N   (Remember your units!)

SH
Answered by Sally H. Physics tutor

17719 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A motorist traveling at 10m/s, was able to bring his car to rest in a distance of 10m. If he had been traveling at 30m/s, in what distance could he bring his cart to rest using the same breaking force?


A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.


What is the general equation for the alpha-decay of a nucleus X, with nucleon number A and proton number Z, into nucleon Y??


An electron of mass 9.11x10^(-31) is fired from an electron gun at 7x10^6 m/s. What size object will the electron need to interact with in order to diffract?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning