Find the magnitude of the force on an electron that is travelling with velocity 2 x 10^4 ms^(-1) in the x direction through a uniform magnetic field of strength 2T in the y direction.

This question tells us we only need to consider the magnitude of the force, and since the magnetic field and electron's velocity are perpendicular, we can simply use the equation

F = Bqv.

We have B = 2 Tq = 1.6 x 10-19 (the charge of an electron) and v = 2 x 10ms-1.

Substituting these values into the equation gives 

F = 2 * (1.6  x 10-19 ) * (2 x 104) = 6.4 x 10-15 N   (Remember your units!)

SH
Answered by Sally H. Physics tutor

17733 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A uniform plank of wood of mass 32 kg and length 4.0 m is used to cross a ditch. In the ditch is a rock, which is used to support the plank horizontally 0.80 m from one end. The other end is supported by the bank. Calculate the rock's supporting force.


Why does the Photoelectric Effect lead to the conclusion that classical physics cannot be all of physics?


By referencing the magnetic field and the alternating potential difference explain how a cyclotron produces a beam of high speed particles.


"An inclined plane at an angle of 25 degrees to the horizontal has a pulley at its top. A 30kg block on the plane is connected to a freely hanging 20kg block by means of a cord passing over the pulley. From rest how far will the 20kg block fall in 2s?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning