Prove that the square of an odd number is always 1 more than a multiple of 4

2n+1 will always be an odd number (e.g. if n is equal to 3 the answer would be 7, an odd number) So, we square 2n+1 and write this as (2n+1)2 2n +12n 4n2 2n+1 2n 1Then multiple out the brackets to give 4n2+4n+1 We then put the equation into brackets again 4(n2 + n) +1 The 4(n2 + n) term will aways be a multiple of 4Therefore we have proved that:(2n+1)2 = 4(n2 + n) +1 and therefore have proved that the square of an odd number is always 1 more than a multiple of 4.


Related Maths GCSE answers

All answers ▸

A right-angle triangle has three sides (diagram would be included). Side A = 3cm; Side B = 7cm. What is the length of Side C (the hypotenuse)? Give your answer to 2 d.p.


Solve the equation 3a^2+4a+1=3 for all values of a. Give your answers to 3 significant figures.


Michael is saving for new iPhone. He gets £30 as pocket money per week, however he spends 20% of the whole amount for leisure and his savings only consists of the residue amount. If an iPhone costs £600 how many weeks would Michael need to save for it?


Factorise 15a^2 + ab - 6b^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences