3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane

Take 2 vectors on the plane, originating from the same point, that aren't parallel: P1-->P2 = P2-P1 = -4i+3j-kP1-->P3 = P3-P1 = 0i+0k-2kOne can then find the cross product of these two vectors to determine a vector that is always perpendicular to the plane. (P1-->P2)x(P1-->P3) =i(3*-2 - -10) - j(-4-2 - -10) + k(-40 - 30) = -6i -8j +0k The general form of the plane can then be given by n⋅r=n⋅a where n is the normal to the plane, r is any point, and a is any point on the plane. Hence the general form of the plane can be given by(-6i-8j+0k)⋅r=(-6i-8j+0k)⋅(1i+2j+3k)=-61+-82+03=22This equation can be converted to cartesian form, so that-6x-8y+0z=22

Answered by Further Mathematics tutor

3025 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


Convert the general complex number z=x+iy to modulus-argument form.


What's the best way to solve projectile problems in Mechanics?


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning