3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane

Take 2 vectors on the plane, originating from the same point, that aren't parallel: P1-->P2 = P2-P1 = -4i+3j-kP1-->P3 = P3-P1 = 0i+0k-2kOne can then find the cross product of these two vectors to determine a vector that is always perpendicular to the plane. (P1-->P2)x(P1-->P3) =i(3*-2 - -10) - j(-4-2 - -10) + k(-40 - 30) = -6i -8j +0k The general form of the plane can then be given by n⋅r=n⋅a where n is the normal to the plane, r is any point, and a is any point on the plane. Hence the general form of the plane can be given by(-6i-8j+0k)⋅r=(-6i-8j+0k)⋅(1i+2j+3k)=-61+-82+03=22This equation can be converted to cartesian form, so that-6x-8y+0z=22

Answered by Further Mathematics tutor

2750 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


Integrate the function f(x) = x ln (x) over the interval [1,e].


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning