A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).

Write 3^(t) as an expression involving x : We can rewrite x = 3^(-t) + 1 as x - 1 = 3^(-t) ; equivalently, 3^(t) = (x-1)^(-1). Substitute this expression into y, to write y in terms of x: y = 2 x 3^(t) = 2 x (x-1)^(-1). Differentiate y with respect to x, using the power rule:dy\dx = -2(x-1)^(-2). Substitute in the expression for 3^(t):dy\dx = -2(x-1)^(-2) = -2 x (3^(t))^(2) = -2 x 3^(2t)

MK
Answered by Maleeha K. Maths tutor

3538 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find gradient of functions


Differentiate x^2


A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


How do we know which formulas we need to learn for the exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning