If y = (1+3x)^2, what is dy/dx?

A good approach to solve this is to use the chain rule of differentiation. The chain rule states: dy/dx= (dy/du)*(du/dx).

In this case let u = 1+3x, so y = u^2.

Then dy/du = 2u and du/dx = 3,

so dy/dx = (2u)*3 = (2(1+3x))*3 = 6+18x

Answered by Nishit B. Maths tutor

8458 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first three terms in the expansion of (4-x)^(-1/2) in ascending powers of x.


How to integrate lnx by parts?


y = (x^2)sin(3x). Find dy/dx


Find the cross product of vectors a and b ( a x b ) where a = 3i + 6j + 4k and b = 6i - 2j + 0k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences