If y = (1+3x)^2, what is dy/dx?

A good approach to solve this is to use the chain rule of differentiation. The chain rule states: dy/dx= (dy/du)*(du/dx).

In this case let u = 1+3x, so y = u^2.

Then dy/du = 2u and du/dx = 3,

so dy/dx = (2u)*3 = (2(1+3x))*3 = 6+18x

NB
Answered by Nishit B. Maths tutor

9658 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


y = 2ln(2x + 5) – 3x/2 , x > –2.5 find an equation to the normal of the curve when x = -2


Use integration to find I = ∫ xsin3x dx


Find the tangent to the curve y = x^2 + 3x + 2 at x = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning