Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0

The general equation for a circle is as follows:(x-a)^2+(y-b)^2=r^2where (a,b) are the coordinates of the centre of the circle and r is the radius of the circle.x^2+y^2-4x-8y+11=0In this case, group all x terms and y terms together, giving: x^2-4x+y^2-8y+11=0Then, complete the square on the x terms and then on the y terms:(x-2)^2-4+(y-4)^2-16+11=0Add all the numbers outside the brackets together:(x-2)^2+(y-4)^2-9=0Move 9 to the right hand side so we have our equation in the form of the general equation:(x-2)^2+(y-4)^2=9Comparing to the general equation:a=2,b=4 so the coordinates of the centre are (2,4)r^2=9 so r=3*note that r cannot be -3 because it describes a distance and you cannot have a negative distance.

Answered by Megan C. Maths tutor

3254 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation ye^(-2x) = 2x + y^2. Find dy/dx in terms of x and y.


How would you find the coordinates of the intersections of a graph with the x and y axes, and the coordinates of any turning points?


When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


How do I do definite integrals?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences