Work out the point at which the line y = x^2 + 4x + 4 hits the y-axis and the x value of its turning point.

To work out the point at which the line hits the y axis, we need to know where x = 0. In order to do this, we need to set x = 0, and so we are left with x = 4.
To find the turning point, we need to differentiate the equation. We need to find the derivative of y with respects to the derivative to x. To do this, we remove the x power and -1 times the multiple of x, multiplying the value by its original power i.e. x would go to 1 and x^2 would go to 2x. In this case, we would get dy/dx = 2x + 4, and since we know that the turnig point is the point on a graph where the curve's gradient is 0, we set dy/dx = 0. Solving and rearranging for x, we get 2x = 4, and x = -2.

EC
Answered by Ethan C. Maths tutor

3265 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve this linear equation? Angles A and B are in a quadrilateral are in ratio 2:3, angle C is 30 degrees more than angle B and angle D is 90 degrees.


Kelly is trying to work out the two values of w for which 3w-w^3=2. Her values are 1 and -1. Are her values correct?


I feel really nervous about time pressure in the exam, I don't think I'll finish


Simultaneous equations - Find the values of y and x: 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning