Differentiate the equation y = x^2 + 3x + 1 with respect to x.

A simple way to differentiate an equation with respect to x is to reduce each x components power by one and multiply each x component by their original power.

Looking at the equation y = x^2 + 3x + 1, the component x^2 will be reduced from a power of 2 to a power of 1 and multiplied by its original power 2 to give 2x. The component 3x is reduced from a power of 1 to a power of zero and multiplied by its original power of 1 to give 3. As 1 is a constant and not an x component it dissapears in the differentiated eqution.

This therefore gives an answer of dy/dx = 2x + 3.

JB
Answered by Jake B. Maths tutor

4537 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If cos(x)= 1/3 and x is acute, then find tan(x).


How do you find the turning points of a graph and how do you if the point is a maximum or a minimum?


f(x) = x^3+2x^2-x-2 . Solve for f(x) = 0


Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences