Why are fringes are formed in the Young double slit experiment?

In the Young double slit experiment, coherent light of wavelength λ from a single source illuminates a system of two slits separated from each other by a small distance a. Each slit causes the light entering it to diffract, and behaves like a light source. Light from each slit is then observed on a screen at a distance D far away from the set of slits.At certain points on the screen, the light waves from each slit arrive in phase (phase difference of 2nπ, with n an integer) with each other, due to the difference in the length the waves have travelled (path difference) being nλ. This causes constructive interference and produces a bright fringe. At other points, the waves from each slit arrive in anti-phase (phase difference of (2n+1)π), corresponding to a path length of (2n+1)λ/2, causing destructive interference and producing no resultant wave which looks like a dark fringe. As a result, an alternating pattern of light and dark fringes is formed. The spacing Δx between light fringes is found using Δx = Dλ/a.

JP
Answered by Joe P. Physics tutor

10811 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

You are asked to find the Young modulus for a metal using a sample of wire. *(a) Describe the apparatus you would use, the measurements you would take and explain how you would use them to determine the Young modulus for the metal.


A car of mass m is travelling at a speed v around a circular track of radius r banked at an angle θ. (a) What is the centripetal acceleration of the car? (b) What is the normal force acting on the car? (c) If θ = 45°, r = 1 km what is the maximum speed?


A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?


Is Pluto a planet?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning