Rationalise the denominator of the following fraction: 9/((root13)-1). Write your answer in its simplest form.

Firstly, a quick overview of rationalising the denominator. For this, we want to make sure that the bottom half of the fraction (the denominator) is rationalised (and so doesn't contain any surds any more). The denominator of this fraction is a binomial term (has two things added or minused together), and so we need to use the conjugate of this. The conjugate means flipping the sign in between the two terms. From then, we can use our standard procedure for rationalising the denominator - multiplying the fraction by the conjugate divided by the conjugate, as shown below:9/(root13-1)*(root13+1)/(root13+1)=(9root13+9)/(13-root13+root13-1)We can then simplify this fraction by cancelling out the root13 terms on the bottom, and dividing the whole thing by 3, to give:(9root13+9)/(13-root13+root13-1)=(9root13+9)/12=(3root13+3)/4Which is our simplified answer, as required in the question.

Answered by Callum C. Maths tutor

2245 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a group of 120 people, 85 have black hair, 78 have brown eyes and 20 have neither black hair nor brown eyes. Find the probability of a random person being picked having black hair, given they have brown eyes


How do I factorise this expression? [Let’s say it’s x^2 + 5x + 6]


A prism with a triangular cross section has volume 120cm^3. The base of the triangular face has length 6cm. The width of the prism is 10cm. The height of the triangular face is h. Find h.


Factorise 5a – 3a^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences