Find the differential of f(x)=y where y=3x^2+2x+4. Hence find the coordinates of the minimum point of f(x)

The differential of f(x) is f'(x)=6x+2 because we apply this basic formula: the differential of kxn = knxn-1 where k is a constant.This is a positive quadratic, so it has a U shape that is above the x-axis (I would draw a sketch of the graph at this point). This means it has only got one point where the gradient is zero. This must be the minimum point of f(x) (I would demonstrate this on the sketch of the graph).Therefore since f'(x) tells us the gradient of f(x), the minimum point will be where f'(x)=0, so we can say 6x+2=0.Solving for this gives x=-1/3. To find the y value for the minimum point we calculate f(-1/3) by substituting x=-1/3 back into the original equation y=3x2+2x+4. This gives a value of 11/3.Hence the minimum point of f(x) is (-1/3, 11/3)

Related Maths A Level answers

All answers ▸

How do I multiply complex numbers?


Integrate the function x(2x+5)^0.5


Express x^2-7x+2 in the form (x-p)^2+q where p and q are rational. Hence or otherwise find the minimum value of x^2-7x+2


The functions f and g are defined by f : x → 2x + ln 2, g : x → e^(2x). Find the composite function gf, sketch its graph and find its range.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences