Find the differential of f(x)=y where y=3x^2+2x+4. Hence find the coordinates of the minimum point of f(x)

The differential of f(x) is f'(x)=6x+2 because we apply this basic formula: the differential of kxn = knxn-1 where k is a constant.This is a positive quadratic, so it has a U shape that is above the x-axis (I would draw a sketch of the graph at this point). This means it has only got one point where the gradient is zero. This must be the minimum point of f(x) (I would demonstrate this on the sketch of the graph).Therefore since f'(x) tells us the gradient of f(x), the minimum point will be where f'(x)=0, so we can say 6x+2=0.Solving for this gives x=-1/3. To find the y value for the minimum point we calculate f(-1/3) by substituting x=-1/3 back into the original equation y=3x2+2x+4. This gives a value of 11/3.Hence the minimum point of f(x) is (-1/3, 11/3)

Related Maths A Level answers

All answers ▸

How do I differentiate y=(4+9x)^5 with respect to x?


Find the stationary points of the curve f(x) =x^3 - 6x^2 + 9x + 1


Given the equation 0=5x^2+3xy-y^3 find the value of dy/dx at the point (-2,2)


Solve the equation 7^(x+1) = 3^(x+2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences