A,B and C all lie on the line x^2 + y^2 = 49 where A is on the y axis, B is on the X axis and C is the mid point of the straight-line connecting A and B.

As we know that A and B are on the axis so sub in X=0 and Y=0 into the equation to solve for the co-ordinates A and B.For A 02+y2=49y= square root of 49 = 7Do the same for B, which gives: A= (0,7) B= (7,0)To find the midpoint between A and B, we simply add the x coordinates and divide by 2 and do the same for the y coordinates.Xc = (0+7)/2Yc= (7+0)/2So C= (3.5,3.5)

Answered by Oliver W. Maths tutor

2762 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically the simulations equations: x^2+y^2=25 and y-3x=13


P + p=


A cuboid has length x cm. The width of the cuboid is 4 cm less than its length. The height of the cuboid is half of its length. The surface area of the cuboid is 90 cm^2 . Show that 2x^2 − 6x − 45 = 0


Fully factorise and simplify (x^2 +7x + 10) / (x^2 - 25)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences