A,B and C all lie on the line x^2 + y^2 = 49 where A is on the y axis, B is on the X axis and C is the mid point of the straight-line connecting A and B.

As we know that A and B are on the axis so sub in X=0 and Y=0 into the equation to solve for the co-ordinates A and B.For A 02+y2=49y= square root of 49 = 7Do the same for B, which gives: A= (0,7) B= (7,0)To find the midpoint between A and B, we simply add the x coordinates and divide by 2 and do the same for the y coordinates.Xc = (0+7)/2Yc= (7+0)/2So C= (3.5,3.5)

OW
Answered by Oliver W. Maths tutor

3505 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would you solve the simultaneous equations y=x+1 and y=4x-2


Write 36 as a product of prime factors. Give your answer in index form.


There are n sweets in a bag. Six of the sweets are orange, the rest are yellow. One sweet is removed from the bag without replacement, then another is removed without replacement. Show that n²-n-90=0


Cylinder A has the volume 8π cm^3 and the height 2 cm. Cylinder B is a similar shape with a volume of 216 cm^3. i) find the linear scale factor. ii) find the surface area of cylinder B


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning