The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.

a) Sub x=3 into the given equation. N is found to be 25.b) Finding dy/dx gives me, as the first differential is the gradient.First differentiate the power and then multiply the differential of the expression inside the bracket. general expression for dy/dx = 2(x^2 -4x-2)X(2x-4)dy/dx at point P(3,25) = 2(9 -12 -2)X(6-4) =-20Determine the constant c from the coordinates of point P which is known to lie on the line we are trying to find. 25 = -20(3) + cc = 85Therefore y = 85 - 20xc) Product rule needed to differentiate dy / dx to get the second differential.Product rule - u' v + v' ud^2 y / dx^2 = 4(2x- 4)(x-2) + 4(x^2-4x-2) = 4(2x^2 -8x +8) + 4x^2 - 16x -8 = 12x^2 -48x +24

Answered by Tom A. Maths tutor

3764 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


How do you differentiate y = 5 x^3 + 1/2 x^2 + 3x -4


y = 6x^2 + 8x + 2. Find dy/dx


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences