Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.

2sin^2(x) + 3sin(x) = 2cos(2x) + 32sin^2(x) + 3sin(x) = 2(cos^2(x) - sin^2(x) ) + 32sin^2(x) + 3sin(x) = 2(1- 2sin^2(x) ) + 32sin^2(x) + 3sin(x) = 2 - 4sin^2(x) + 36sin^2(x) + 3sin(x) - 5 = 0 let sin(x) = yThen solve : 6Y^2 + 3Y - 5 = 0Y = [-3(+ or - ) root(129) ] / 12 = sin(x)sin(x) result always between [-1,1]. As such one of these solutions can be disregarded as it lies outside of this range. Take arcsin of the other result.Gives x = 44.1 degrees. Second solution in the range is 135.9 degrees. Second result calculated from graph or ASTC circle.

Answered by Tom A. Maths tutor

3365 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to find ∫ (x^2)sin(x) dx. (A good example of having to use the by parts formula twice.)


Point P on the curve, x = 2tan( y+ π/12), has a y-coordinate of π/4. Find an equation for the normal to the curve at P.


Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences