Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.

2sin^2(x) + 3sin(x) = 2cos(2x) + 32sin^2(x) + 3sin(x) = 2(cos^2(x) - sin^2(x) ) + 32sin^2(x) + 3sin(x) = 2(1- 2sin^2(x) ) + 32sin^2(x) + 3sin(x) = 2 - 4sin^2(x) + 36sin^2(x) + 3sin(x) - 5 = 0 let sin(x) = yThen solve : 6Y^2 + 3Y - 5 = 0Y = [-3(+ or - ) root(129) ] / 12 = sin(x)sin(x) result always between [-1,1]. As such one of these solutions can be disregarded as it lies outside of this range. Take arcsin of the other result.Gives x = 44.1 degrees. Second solution in the range is 135.9 degrees. Second result calculated from graph or ASTC circle.

Answered by Tom A. Maths tutor

3335 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution of the following equation: e^(4x-3) = 11


Form the differential equation representing the family of curves x = my , where, m is arbitrary constant.


If y = 1/(x^2) + 4x, find dy/dx


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences