Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.

2sin^2(x) + 3sin(x) = 2cos(2x) + 32sin^2(x) + 3sin(x) = 2(cos^2(x) - sin^2(x) ) + 32sin^2(x) + 3sin(x) = 2(1- 2sin^2(x) ) + 32sin^2(x) + 3sin(x) = 2 - 4sin^2(x) + 36sin^2(x) + 3sin(x) - 5 = 0 let sin(x) = yThen solve : 6Y^2 + 3Y - 5 = 0Y = [-3(+ or - ) root(129) ] / 12 = sin(x)sin(x) result always between [-1,1]. As such one of these solutions can be disregarded as it lies outside of this range. Take arcsin of the other result.Gives x = 44.1 degrees. Second solution in the range is 135.9 degrees. Second result calculated from graph or ASTC circle.

Answered by Tom A. Maths tutor

3331 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solving Quadratic Equations


Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.


Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences