Differentiate 2cos(x)sin(x) with respect to x

To solve this differential, firstly note that 2cos(x)sin(x) = sin(2x) (by the Double-Angle Sine Identity), this makes computing the differential a lot easier. To differentiate sin(2x) we need to use the chain rule so let, t = 2x then y = sin(t). Differentiating t = 2x with respect to x gives, dt/dx = 2. Differentiating y = sin(t) with respect to t gives, dy/dt = cos(t) Then by the chain rule, dy/dx = dy/dt * dt/dx. So dy/dx = cos(t) * 2 = 2cos(t). Write t in terms of x, we know from our definition of t that t = 2x. Therefore, dy/dx = 2cos(2x) So the differential of 2cos(x)sin(x) with respect to x is 2cos(2x). (Note: To check the answer try computing 2cos(x)sin(x) using the product rule.)

Answered by Ryan H. Maths tutor

6390 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that (2x-1) : (x-4) = (16x+1) : (2x-1), find the possible values of x


Find the area enclosed between the curves y = f(x) and y = g(x)


The curve C has equation y = f(x) where f(x) = (4x + 1) / (x - 2) and x>2. Given that P is a point on C such that f'(x) = -1.


How would you solve (2x+16)/(x+6)(x+7) in partial fractions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences