Differentiate 2cos(x)sin(x) with respect to x

To solve this differential, firstly note that 2cos(x)sin(x) = sin(2x) (by the Double-Angle Sine Identity), this makes computing the differential a lot easier. To differentiate sin(2x) we need to use the chain rule so let, t = 2x then y = sin(t). Differentiating t = 2x with respect to x gives, dt/dx = 2. Differentiating y = sin(t) with respect to t gives, dy/dt = cos(t) Then by the chain rule, dy/dx = dy/dt * dt/dx. So dy/dx = cos(t) * 2 = 2cos(t). Write t in terms of x, we know from our definition of t that t = 2x. Therefore, dy/dx = 2cos(2x) So the differential of 2cos(x)sin(x) with respect to x is 2cos(2x). (Note: To check the answer try computing 2cos(x)sin(x) using the product rule.)

RH
Answered by Ryan H. Maths tutor

7820 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I expand a bracket to a negative power if it doesn't start with a 1.


prove that lnx differentiated is 1/x


The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.


There is a Ferris wheel where the passengers are placed 10m away from the centre. At what speed must they be moving in order for them to feel completely weightless at the top of the wheel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning