Why is gravitational potential energy negative?

While on the Earth's surface, you need to put in energy to move upwards, due to the force of gravity from the Earth's mass acting on you - eg jumping upwards requires energy.
The force of gravity is strongest the closer you are to the source of it (eg the planet), and weaker the further you are from it (eg it is zero at an infinite distance)
At an infinite distance, there is no gravitational force acting on you. This means there is also no ability for you to be moved by the force, or in other words your potential energy must be zero.
However, as you move closer to Earth, your potential energy must decrease - the only way this is possible is for it to be negative.
Mathematically:
We know that Newton's law of gravitation is: F = - (GMm)/(r^2)
Minus sign shows it is an attractive force, ie you move opposite to the vector extending radially from the Earth to yourself in free space
And we know a potential associated with a force is: U = - Int[F.dx]
Hence V = -Int[-(GMm)/(r^2).dr]
= Int[(GMm)/(r^2) .dr]
= -GMm/r
At r = infinity, V = 0; at r<infinity, V<0

Related Physics A Level answers

All answers ▸

State Faraday's Law of electromagnetic induction, both qualitatively and quantitatively. How is Lenz's Law included in this? (4 marks)


An electron is traveling at a velocity of 500m/s perpendicular to a uniform magnetic field. A force of magnitude 4.32 x10^(-16) N is acting on the electron, what is the magnetic flux density of the field?


What is the angular velocity of a person standing on the surface of the earth. Give your answer in radians per second


A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences