Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.

First let’s break this statement down. At the core of this sentence are two consecutive multiples of 5. How can we represent these using algebra? Let’s use 5a where “a” is an integer. A consecutive multiple of 5 would then be 5(a + 1). Use an example for “a” to understand this.Then, the SUM of the SQUARES refers precisely to the following:(5a)^2 + (5(a+1))^2which when expanded, becomes50a^2 + 10a + 25 Under evaluation, the first 2 terms will always be multiples of 10, but adding 25 stops the entire expression from being a multiple of 10.

Answered by Daniel S. Maths tutor

4237 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?


Let f(x)= x^3 -9x^2 -81x + 12. Calculate f'(x) and f''(x). Use f'(x) to calculate the x-values of the stationary points of this function.


Show that the equation 5sin(x) = 1 + 2 [cos(x)]^2 can be written in the form 2[sin(x)]^2 + 5 sin(x)-3=0


How do I rationalise the denominator of a fraction which consists of surds?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences