Find the coordinates of the centre of the circle with equation: x^2 + y^2 − 2*x + 14*y = 0

method: complete the squares for (x^2 - 2x ) and ( y^2 + 14y ) using the formula (b/2)^2 (where the general equation is ax^2 + bx) so that the equation becomes ax^2 + bx + (b/2)^2first, rearrange the original equation: (x^2 - 2x ) + (y^2 + 14y) = 0then use the completing the squares method on each bracketed section: (x^2 - 2x + 1) + (y^2 + 14y + 49) = 0factorise each bracketed section: (x - 1)^2 + (y + 7)^2 = 0centre of the circle (a,b) is found when the circle equation is in this format: (x - a)^2 + (y - b)^2 = r^2 (where r is the radius of the circle). Using this, the centre of the circle is (1,-7)Answer: centre of the circle is (1, -7)

CA
Answered by Catherine A. Maths tutor

3808 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve the differential equation dy/dx=(3x*exp(4y))/(7+(2x^(2))^(2) when y = 0, x = 2


Integrate the following function: f(x) = ln(x)


For y = 7x - x^3, find the two stationary points and what type of stationary points they are.


Differentiate z = e^(3y^2+5) with respect to y. (Hint: use chain rule.)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences