Differentiate y = arcsin(x) with respect to x

y = arcsin(x) implies sin(y) = x
Differentiating with respect to x gives: cos(y)*dy/dx = 1So: dy/dx = 1/cos(y)
Noting that cos(y) = sqrt(1 - sin^2(y)): dy/dx = 1/sqrt(1 - sin^2(y)) = 1/sqrt(1 - x^2)

Answered by Maths tutor

3717 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


What is the differential of y =sin(2x)?


Is a line ax+by+c=0 tangent to a circle?


if f is defined on with f(x)=x^2-2x-24(x)^0.5 for x>=0 a) find 1st derivative of f, b) find second derivative of f, c) Verify that function f has a stationary point when x = 4 (c) Determine the type stationary point.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning