Answers>Maths>IB>Article

How do I derive the indefinite integral of sine?

The integral of sine is pretty easy to remember as it is -cos + C. However you need to be able to prove this, without using the integral of cosine. This method uses sines exponential form.

As eiθ​ = cosθ + isinθ, sine can be expressed as sinθ = (eiθ​- e-iθ​) / 2i. This can make the integration easier as the indefinite integral of ekx = (1/k)ekx and the indefinite integral of e-kx = (-1/k)e-kx

Thus ∫sinx dx = ∫(eix- e-ix) / 2i dx = (1/2i)[ ∫eixdx - ∫e-ix dx] = (1/2i)[eix/i + e-ix​/i] + C =  [-(eix​ + e-ix) / 2]  + C.

Now just as sine can be expressed using complex numbers so can cosine such that cosθ = (eiθ​ + e-iθ​) / 2.

Thus  ∫sinx dx = [-(eix​ + e-ix) / 2]  + C = - cosx + C

Answered by Lucile C. Maths tutor

2484 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find cos4x in terms of cosx.


How do I integrate the volume of revolution between 0 and pi of y=sin(x)?


The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.


What does differentiation actually mean?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences