Prove the property: log_a(x) + log_a(y) = log_a(xy).

The derivation of the property starts with the basic representation of logarithms as powers. Lets consider a^(log_a(xy)). Then, a^(log_a(xy)) = xy. However, x = a^(log_a(x)) and y = a^(log_a(y)). Therefore, xy = a^(log_a(y)) * a^(log_a(x)) = a^(log_a(x) + log_a(y)). Hence, log_a(x) + log_a(y) = log_a(xy).

Related Maths A Level answers

All answers ▸

How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


Solve the differential equation: dy/dx = 6x^2 + 4x + 9


give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences