Integrate 3x^2+cos(x) with respect to x

First split the question into two integrals, the integral of 3x^2 and the integral of cos(x).We'll tackle the first integral first, you have to think what value would differentiate to give 3x^2. We can see that the x part of this would be x^3 as this differentiates to 3x^2. This works out well as this has given us our answer however if this question had been to integrate 2x^2 we would have had to have multiplied the answer by 2/3 as 2/3*x^3 differentiated gives 2x^2.So the answer for the first part of the question is x^3+b (as we must never forget the constant of integration).Then we tackle the second part (integrate cos(x) with respect to x). We know that sin(x) differentiates to cos(x) so the answer for this part is simply sin(x)+d (a different constant of integration).We then just add the answers: x^3+b+sin(x)+d.As b and d are both unknown constants of integration we can just add these to give one constant of integration (c).So the answer is: x^3+sin(x)+c

CH
Answered by Charlotte H. Maths tutor

4494 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the gradient of a line at a certain point when f(x) is in the form of a fraction, where both the numerator and denominator are functions of x?


How exactly does integration by parts work?


integrate x^2 + 3x + 4


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning