Find the gradient of 4(8x+2)^4 at X coordinate 2

To find a gradient at a given point, first we differentiate then we sub in the x coordinate of the point. To differentiate 4(8x+2)4 we must use the chain rule. First we let u= 8x+2 and differentiate this to find du/dx = 8. Then we must find the rest, we differentiate y = 4u4 , dy/du = 16u3 . The chain rule then states that dy/dx = dy/du x du/dx so we get 16u3 x 8 and as u = 8x+2 we get: 128(8x+2)3.To find the value at X coordinate 2 we sub the value into dy/dx and get 128(8(2)+2)3 multiply this out and we get 128 x 183 = 746,946. So the gradient of 4(8x+2)4 at X coordinate 2 is 746,946.

Related Maths A Level answers

All answers ▸

How would I find the indefinite integral of x*cos(x) dx


Find the centre and radius of the circle with the equation x^2 + y^2 - 8x - 6y - 20 = 0.


(Using the Quotient Rule) -> Show that the derivative of (cosx)/(sinx) is (-1)/(sinx).


The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences