Find y if dy/dx = y² sec²(x), given that y(0) = 1

1/y² dy/dx = sec²(x)∫ 1/y² dy/dx dx = ∫ sec²(x) dx-1/y + C1 = tan(x) + C2y = -1/(tan(x) + A) where A = C2 - C1y(0) = -1/A so y(0) = 1 means A = -1. Finished!

Answered by Nikolai M. Maths tutor

2942 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


Find the roots of the following quadratic equation: x^2 +2x -15 =0


Solve int(ln(x)dx)


Evaluate the integral ∫2x√(x^2 +1) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences