The equation of a curve is y = x^2 - 5x. Work out dy/dx

This is an example of differentiation. This can be useful in many concepts, one being finding the gradient of a line or curve at a certain point. To differentiate these types of equations, the rule is to multiply the front by the power and to take one from the power!y = x^2 - 5xWe will take each part separately. Starting with x^2. We multiply the front (which is 1) by the power (which is 2), therefore the constant at the front is now 2. We take one from the power, so 2 - 1 = 1. Therefore the derivative of x^2 is 2x.Next we take 5x. Multiply the front (5) by the power (1), and take 1 from the power (1 - 1 = 0). Therefore the derivative of 5x is 5.Now, we put it all together! dy/dy = 2x - 5!

VL
Answered by Venetia L. Further Mathematics tutor

8932 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solving equations with unknown in both sides


Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


Can you explain induction and go through an example?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning