Prove that 8 times any triangle number is always 1 less than a square number

A triangle number is a number such that it is the sum of n consecutive integers, starting from 0. Eg 1, 1+2, 1+2+3... are the first 3 triangle numbers. The formula for the nth triangle number is well-known at A-level and is (1/2)(n)(n+1); the formula for the sum of the first n integers. To answer the question we must show that 8N+1, where N is any triangle number, is a perfect square.
8N+1 = 8(1/2)(n)(n+1)+1 = 4n(n+1)+1=4n^2 + 4n + 1This is a perfect square, as we can rewrite it as:(2n+1)^2with it's root of 2n+1 being an integer. Therefore we have shown that 8N+1 is a perfect square, hence the result has been proved.

Related Maths A Level answers

All answers ▸

(a) Express 9x+11/(2x+3)(x-1) as partial fractions and (b) find the integral of 9x+11/(2x+3)(x-1) with respect to x


Find the first four terms in the binomial expansion of (2 + x) ^5


Evaluate gf(-5) for the functions f(x)=3x+7, g(x)=3x^2+6x-9


differentiate 4x^3 + 3x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences