Prove that 8 times any triangle number is always 1 less than a square number

A triangle number is a number such that it is the sum of n consecutive integers, starting from 0. Eg 1, 1+2, 1+2+3... are the first 3 triangle numbers. The formula for the nth triangle number is well-known at A-level and is (1/2)(n)(n+1); the formula for the sum of the first n integers. To answer the question we must show that 8N+1, where N is any triangle number, is a perfect square.
8N+1 = 8(1/2)(n)(n+1)+1 = 4n(n+1)+1=4n^2 + 4n + 1This is a perfect square, as we can rewrite it as:(2n+1)^2with it's root of 2n+1 being an integer. Therefore we have shown that 8N+1 is a perfect square, hence the result has been proved.

Answered by Maths tutor

10097 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Maths C1 2017 1. Find INT{2x^(5) + 1/4x^(3) -5}


A curve C has equation y = x^2 − 2x − 24x^(1/2) x > 0 find dy/dx


A curve has equation y^3+2xy+x^2-5=0. Find dy/dx.


What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning