How do you rationalize the denominator of a fraction?

Questions which ask for you to rationalize the denominator usually includes an integer and a square root of a number (x+sqrt(y)).We can use the following formula to our advantage: (a+b)(a-b)=a^2-b^2. In this case, using x and y: (x+sqrt(y))(x-sqrt(y))=x^2-y, and we can see, that it eliminates the square root from the denominator.How can we achive this? By multiplying the fraction by 1, more specifically by (x-sqrt(y))/(x-sqrt(y)) or the other way around.

Answered by Maths tutor

3113 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How can you calculate the distance between 2 points in a grid if they're not on the same horizontal or vertical line?


If we take a number and square it, the answer is also the product of the two numbers either side of it plus one. Prove algebraically that this works for all numbers.


Rectangle A has a length of 3y cm and a width of 2x cm. Rectangle B has a length of (y + 4)cm and a width of (x + 6)cm. Rectangle A has a perimeter of 94cm and Rectangle B has a perimeter of 56cm. Solve x and y and calculate the areas of each rectangle.


Solve 3x+7=1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning