ABCD is a rectangle with sides of lengths x centimetres and (x − 2) centimetres.If the area of ABCD is less than 15 cm^2 , determine the range of possible values of x.

First you interpret the given information and create an equation based on the question. x(x-2)<15. Then you express that equation in standard quadratic form: x^2-2x-15<0. Then you have to not forget that x cannot be smaller than 2, because a side of a rectangle cannot be negative. Then you factorise the equation: (x-5)(x+3)<0. And finally you come to the conclusion that the state range is 2<x<5.

Related Maths A Level answers

All answers ▸

Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


How can I determine the stationary points of a curve and their nature?


Find all possible values of θ for tan θ = 2 sin θ with the range 0◦ ≤ θ ≤ 360◦


Find the area under the curve y=xsin(x), between the limits x=-pi/2 and x=pi/2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences