ABCD is a rectangle with sides of lengths x centimetres and (x − 2) centimetres.If the area of ABCD is less than 15 cm^2 , determine the range of possible values of x.

First you interpret the given information and create an equation based on the question. x(x-2)<15. Then you express that equation in standard quadratic form: x^2-2x-15<0. Then you have to not forget that x cannot be smaller than 2, because a side of a rectangle cannot be negative. Then you factorise the equation: (x-5)(x+3)<0. And finally you come to the conclusion that the state range is 2<x<5.

Answered by Maths tutor

6157 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Some videos I've made


Express 9^(3x+)1 in the form 3^y giving y in the form of ax+b where a and b are constants.


Differentiate 4(x^3) + 3x + 2 with respect to x


Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning