Given that y =2x^3 + 3/(x^2), find a) dy/dx and b) the integral of y

a) It is useful to rewrite the equation using power rules, so we get y = 2x3 + 3x-2Now we can simply use the differentiation rules where we multiply the coefficient (number before x) by the power, then reducing the power by one.This way we get dy/dx = 6x2 - 6x-3b) Once again it is simpler to integrate y = 2x3 + 3x-2We use the integration rules of increasing the power by one then dividing the coefficient by the new power:(2x4)/4 + (3x-1)/1 + c= (x4)/2 - 3x-1 + cRemember, as we are doing indefinite integration (integrating y but not between 2 limits), we must add a constant that we can call c.

Answered by Balint S. Maths tutor

5866 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of a Circle with centre (2,9) and radius 4.


What is the sum of the infinite geometric series 1 + 1/3 + 1/9 +1/27 ...?


A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


Solve for x, 5sin(x) - 3cos(x) = 2 , in the interval 0<x<2pi


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences