Why is benzene more stable than the theoretical model cyclohexa-1,3,5-triene?

In cyclohexa-1,3,5-triene the molecule has 3 single bonds and 3 double bonds where all the electrons are localised. As a result the energy needed to hydrogenate cyclohexa-1,3,5-triene is (3x -120kJ/mol) = -360kJ/mol.However, benzene is a planar, aromatic molecule so all of the pz orbitals overlap. The overlap of the pz orbitals form a ring of resonance and allows all 6 pz electrons to be delocalised across the ring. The delocalisation of the pi electrons contributes to the stabalisation energy of benzene. This extra energy from resonance means benzene has a lower hydrogenation energy of -208kJ/mol and is more stable than predicted.

AP
Answered by Afia P. Chemistry tutor

23152 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

The enthalpy of combustion of ethanol is −1371 kJ mol−1 . The density of ethanol is 0.789 g cm−3 . Calculate the heat energy released in kJ when 1 dm3 of ethanol is burned.


What is hybridisation and how can it be used to explain the shapes of molecules?


A) The compound butan-2-ol reacts with acidified potassium dichromate(VI) to form a new compound. Give the IUPAC name of the Product. B) 2,2-dimethyl butan-2-ol was subjected to the same conditions. State and explain the outcome


What does Le Chatelier's principle say happens to an equilibrium when temperature is changed or a catalyst is added?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning