Find the inverse of the function g(x)=(4+3x)/(5-x)

For simplicity first rewrite as y=(4+3x)/(5-x). Now swap any x for a y, and any y for an x. This leaves the equation x=(4+3y)/(5-y). Our goal is to make y the subject of the formula. Multiply both sides by (5-y) to get rid of the denominator on the right hand side of the equation. At this stage we have x(5-y)=(4+3y). Subtract (4+3y) from both sides and expand the x(5-y) term. What we get is 5x-xy-4-3y=0. Collect all the y-terms together to get y(-3-x)+5x-4=0. Now move all the non-y-terms to the right hand side of the equation: y(-3-x)=4-5x Divide through by (-3-x) to obtain y=(4-5x)/(-3-x). Note this can be written as y=(5x+4)/(-1)(3+x). Then we rewrite this as y=-(5x+4)/(3+x) which is the inverse of the original function g(x)=(4+3x)/(5-x).

Answered by Martin M. Maths tutor

3631 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)


Core 3 - Modulus: Solve the equation |x-2|=|x+6|.


Find the indefinite integral of ( 32/(x^3) + bx) over x for some constant b.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences